Efektifitas Arang Batok Kelapa dalam Menurunkan Kadar Nikel, E Coli, dan Kekeruhan pada Air Sumur Gali

  • Idayani Sangadjisowohy Poltekkes Kemenkes Ternate, Maluku Utara
  • Sumiati Tomia Poltekkes Kemenkes Ternate, Maluku Utara
  • Jasman Jasman Dinas Kesehatan Halmahera Tengah
  • Risman S. Duka Dinas Kesehatan Halmahera Tengah
Keywords: Coconut shell charcoal, E.Coli, dug wells, nickel, Lelilef Village, water turbidity

Abstract

Water is essential for human life, as it plays a crucial role in various biological processes within the body, with water constituting 50-70% of total body weight. This study aimed to assess the effectiveness of coconut shell charcoal in reducing levels of nickel, E. coli, and turbidity in dug well water. An experimental research design with a "Pre-Post Test Design" was employed. The study was conducted in Lelilef Village, Central Halmahera Regency, using 70 dug wells as samples. Ten liters of water from each well were filtered using coconut shell charcoal, which was locally sourced from the village. Purposive sampling was applied in selecting the wells for filtration. The results indicated that coconut shell charcoal filtration significantly reduced nickel levels by 98.6%, decreased E. coli levels in 64.3% of the samples, and successfully met water turbidity standards. Conclusion : The use of coconut shell charcoal is effective in reducing nickel, E. coli, and turbidity in contaminated well water.

Downloads

Download data is not yet available.

References

WHO. Drinking Water. Geneva; 2022.

Sajidan, Atmojo IRW, Ardiansyah R, Saputri DY. A simple water purification tool as an effort to meet clean water needs. IOP Conf Ser Earth Environ Sci. 2024;1314(1):1–9.

Syahriani N, Palutturi S, Bintara Birawida A, Hidayanty H. Clean Water Supply as an Indicator for Healthy Island in Makassar City. Open Access Maced J Med Sci. 2022;10(E):320–5.

Kumar R, Verma A, Shome A, Sinha R, Sinha S, Jha PK, et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability. 2021;13(17):1–40.

Haddaway NR, Cooke SJ, Lesser P, Macura B, Nilsson AE, Taylor JJ, et al. Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal regions: a systematic map protocol. Environ Evid. 2019;8(1):9–19.

Worlanyo AS, Jiangfeng L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J Environ Manage. 2021;279(2):1–10.

Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv. 2023;13(26):17595–610.

Singh V, Ahmed G, Vedika S, Kumar P, Chaturvedi SK, Rai SN, et al. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study. Sci Rep. 2024;14(1):1–11.

Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, Baskar G, et al. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. Environ Res. 2024;258(10):1–12.

N. Khalef R, I. Hassan A, M. Saleh H. Heavy Metal’s Environmental Impact. In: Environmental Impact and Remediation of Heavy Metals. IntechOpen; 2022.

Masthura M, Putra Z. Karakterisasi Mikrostruktur Karbon Aktif Tempurung Kelapa dan Kayu Bakau. Elkawnie. 2018;4(1):1–11.

Sriatun S, Herawati S, Aisyah I. Effect of Activator Type on Activated Carbon Characters from Teak Wood and The Bleaching Test for Waste Cooking Oil. Jurnal Rekayasa Kimia & Lingkungan. 2020;15(2):79–89.

Jjagwe J, Olupot PW, Menya E, Kalibbala HM. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts. 2021;6(4):292–322.

Fatmawati S, Syar NI, Suhartono S, Maulina D, Ariyadi R. Arang Aktif Gambut sebagai Filter Logam Berat Mercury (Hg). JURNAL ILMIAH SAINS. 2021;21(1):63–70.

Yogaswari D, Kurniawan K, Mujahid I, Ritma Dhanti K. Formulasi Gel Ekstrak Arang Tempurung Kelapa dan Uji Sensitivitas Terhadap Bakteri Escherichia coli. BIOEDUSCIENCE. 2024;8(1):84–94.

Navab-Daneshmand T, Friedrich MND, Gächter M, Montealegre MC, Mlambo LS, Nhiwatiwa T, et al. Escherichia coli Contamination across Multiple Environmental Compartments (Soil, Hands, Drinking Water, and Handwashing Water) in Urban Harare: Correlations and Risk Factors. Am J Trop Med Hyg. 2018;98(3):803–13.

Xing X, Li T, Bi Z, Qi P, Li Z, Wang H, et al. Enhancing inhibition of disinfection byproducts formation and opportunistic pathogens growth during drinking water distribution by Fe2O3/Coconut shell activated carbon. Environmental Pollution. 2021;268(1):1–11.

Packialakshmi S, Anuradha B, Nagamani K, Sarala Devi J, Sujatha S. Treatment of industrial wastewater using coconut shell based activated carbon. Mater Today Proc. 2023;81(1):1167–71.

Li P, Karunanidhi D, Subramani T, Srinivasamoorthy K. Sources and Consequences of Groundwater Contamination. Arch Environ Contam Toxicol. 2021;80(1):1–10.

Santucci L, Carol E, Tanjal C. Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina). Chemosphere. 2018;206(9):727–35.

Kuok KK, Chiu PC, Rahman MdR, Chin MY, Bin Bakri MK. Sustainable bamboo and coconut shell activated carbon for purifying river water on Borneo Island. Waste Management Bulletin. 2024;2(1):39–48.

Afia Nita Batdjedelik, Sumardiyono. Karbon Aktif dari Tempurung Kelapa sebagai Adsorben Pemurnian Minyak Jelantah. JURNAL KIMIA DAN REKAYASA. 2024;4(2):64–70.

Cristina Páez-Pumar Romer I, Victoria Plazola Santana I, María Rodríguez Bengoechea R, Manuel Pérez Hernández M. Coconut Shell Charcoal Adsorption to Remove Methyl Orange in Aqueous Solutions. In: Sorption - From Fundamentals to Applications. IntechOpen; 2022. p. 1–11.

Marcelino MM, Leeke GA, Jiang G, Onwudili JA, Alves CT, Santana DM de, et al. Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation. Energies (Basel). 2023;16(8):1–9.

Noor Salim, Nanang Saiful Rizal, Ricky Vihantara. Komposisi Efektif Batok Kelapa sebagai Karbon Aktif untuk Meningkatkan Kualitas Airtanah di Kawasan Perkotaan. Media Komunikasi Teknik Sipil. 2018;24(1):87–95.

HARMI TJAHJANTI P, Ernanda RR. Silica Sand, Activated Carbon, and Manganese Zeolite for Clean Water Filtration. Indonesian Journal of Cultural and Community Development. 2024;15(3):1–10.

Ayeleru OO, Modekwe HU, Onisuru OR, Ohoro CR, Akinnawo CA, Olubambi PA. Adsorbent technologies and applications for carbon capture, and direct air capture in environmental perspective and sustainable climate action. Sustainable Chemistry for Climate Action. 2023;3(1):1–12.

Onyutha C, Okello E, Atukwase R, Nduhukiire P, Ecodu M, Kwiringira JN. Improving household water treatment: using zeolite to remove lead, fluoride and arsenic following optimized turbidity reduction in slow sand filtration. Sustainable Environment Research. 2024;34(1):4–15.

Kwakye-Awuah B, Sefa-Ntiri B, Von-Kiti E, Nkrumah I, Williams C. Adsorptive Removal of Iron and Manganese from Groundwater Samples in Ghana by Zeolite Y Synthesized from Bauxite and Kaolin. Water (Basel). 2019;11(9):1912–22.

Meiramkulova K, Kydyrbekova A, Devrishov D, Nurbala U, Tuyakbayeva A, Zhangazin S, et al. Comparative Analysis of Natural and Synthetic Zeolite Filter Performance in the Purification of Groundwater. Water (Basel). 2023;15(3):588–98.

Abdiyev K, Azat S, Kuldeyev E, Ybyraiymkul D, Kabdrakhmanova S, Berndtsson R, et al. Review of Slow Sand Filtration for Raw Water Treatment with Potential Application in Less-Developed Countries. Water (Basel). 2023;15(11):2007–17.

Wu R, Yao F, Li X, Shi C, Zang X, Shu X, et al. Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies. Microorganisms. 2022;10(12):2411–21.
Published
2025-06-30
How to Cite
Sangadjisowohy, I., Tomia, S., Jasman, J., & Duka, R. S. (2025). Efektifitas Arang Batok Kelapa dalam Menurunkan Kadar Nikel, E Coli, dan Kekeruhan pada Air Sumur Gali. Jurnal Sehat Mandiri, 20(1), 1-10. https://doi.org/https://doi.org/10.33761/jsm.v20i1.1752