ANALISIS POTENSI BAHAYA PADA PEKERJAAN DENGAN METODE *JOB SAFETY*ANALYSIS (JSA) DI PT SARI TEKNINDO PERKASA TAHUN 2024

Mutiara Ayunda, Evino Sugriarta, Aidil Onasis, Sri Lestari Adriyanti, Awaluddin (Prodi Sarjana Terapan Sanitasi Lingkungan Kemenkes Poltekkes Padang)

Abstract

The potential hazards in industrial activities stemming from humans, machines, materials, and methods can lead to workplace accidents. This is due to the ineffective implementation of the occupational health and safety management system (OHS). Therefore, it is essential to implement an OHS management system to identify potential hazards and prevent workplace accidents. The Job Safety Analysis (JSA) method can be applied to analyze potential hazards in the workplace and determine effective control measures to mitigate risks. The purpose of this research is to identify potential hazards, risk levels, and hazard control measures at PT Sari Teknindo Perkasa in 2024. This descriptive study focuses on the potential hazards associated with lathe, welding, grinding, and shaping operations. Data collection was conducted through observation and in-depth interviews using a structured interview guide, which was then analyzed narratively. The study found potential hazards including: finger entrapment in the lathe chuck, eye injury from debris, electrical shocks, exposure to welding rays and sparks, injuries from grinding wheel fragments, excessive noise, cuts from the shaping tool, and workpieces falling on feet. The conclusion of this research is that the operation of lathes, welding, grinding, and shaping machines contains various potential hazards that can cause workplace accidents. It is recommended that the company implement a comprehensive hazard control hierarchy, particularly for high-risk hazards, while involving workers in its development and implementation to create a safe working environment and minimize workplace accidents.

Keywords: Potential Hazard; Job Safety Analysis (JSA); OHS

Abstrak

Potensi bahaya pada kegiatan industri yang bersumber dari manusia, mesin, material dan metode pada pekerjaan dapat menyebabkan terjadinya kecelakaan kerja. Hal ini disebabkan oleh penerapan sistem manajemen K3 yang belum efektif. Maka dari itu, perlu diterapkan sistem manajemen K3 dalam mengenali potensi bahaya untuk mencegah terjadinya kecelakaan kerja. Metode Job Safety Analysis (JSA) dapat diterapkan dalam menganalisis potensi bahaya pada pekerjaan kemudian menentukan langkah pengendalian yang efektif untuk mencegah risiko yang dapat terjadi. Adapun tujuan penelitian ini untuk mengetahui potensi bahaya, tingkat risiko dan tindakan pengendalian bahaya di PT Sari Teknindo Perkasa Tahun 2024. Jenis penelitian ini deskriptif dengan objek penelitian potensi bahaya pekerjaan mesin bubut, las, gerinda dan sekrap. Pengumpulan data melalui observasi dan wawancara mendalam menggunakan pedoman wawancara yang kemudian dianalisis secara naratif. Ditemukan potensi bahaya pada mesin bubut jari terlilit chuck, mata terkena bram, tersengat listrik. Las terkena paparan sinar dan percikan api. Terkena pecahan batu gerinda, kebisingan berlebih. Mesin sekrap tangan tersayat pahat, benda kerja menimpa kaki. Kesimpulan penelitian ini adalah operasi mesin bubut, las, gerinda, dan sekrap mengandung berbagai potensi bahaya yang dapat menyebabkan kecelakaan kerja. Disarankan perusahaan untuk menerapkan hierarki pengendalian bahaya secara menyeluruh terutama pada bahaya dengan risiko tinggi disertai keterlibatan pekerja dalam mengembangkan dan menerapkannya guna menciptakan lingkungan kerja yang aman sehingga dapat meminimalisir terjadinya kecelakaan kerja.

Kata Kunci: Potensi Bahaya; Job Safety Analysis (JSA); K3

PENDAHULUAN

Industri merupakan suatu lokasi atau tempat dilaksanakannya proses produksi yang merupakan sekumpulan aktivitas yang diperlukan untuk merubah satu kumpulan masukan (*Man, Money, Material, Machine, Method, Minute, Market, Energy, Information*) menjadi suatu jasa/produk keluaran yang mempunyai nilai tambah. Dalam kegiatan industri terdapat berbagai bentuk bahaya di lingkungan kerja yang terjadi sebagai akibat aktivitas manusia dalam proses produksi atau faktor-faktor lingkungan kerja yang berpotensi menimbulkan penyakit akibat kerja dan kecelakaan kerja. Bahaya di lingkungan kerja timbul karena adanya interaksi antar unsur produksi, yaitu manusia, peralatan, material, bahan, proses serta prosedur atau sistem kerja.

Dalam menyusun kebijakan, pengusaha paling sedikit harus melakukan tinjauan awal kondisi K3 yang meliputi identifikasi potensi bahaya, penilaian dan pengendalian risiko. Tindakan pengendalian dalam pelaksanaan rencana K3 diselenggarakan oleh setiap perusahaan terhadap kegiatan, produk, barang dan jasa yang dapat menimbulkan risiko kecelakaan dan penyakit akibat kerja.³

Salah satu metode identifikasi potensi bahaya dalam usaha menciptakan keselamatan kerja yaitu penerapan metode *Job Safety Analysis* (JSA). Metode ini merupakan upaya untuk mempelajari/menganalisa langkah kerja suatu pekerjaan dengan mengidentifikasi potensi bahaya di dalamnya kemudian mengetahui tingkat risiko sehingga dapat menentukan bentuk pengendalian bahaya berdasarkan hierarki pengendalian (eliminasi, subtitusi, rekayasa teknik, kontrol administrasi dan alat pelindung diri).⁴

Berdasarkan hasil penelitian terdahulu menunjukkan bahwa penerapan *Job Safety Analysis* (JSA) dapat membantu mengurangi risiko kecelakaan kerja. Risiko kecelakaan di bagian *drilling* dapat dikendalikan dengan memperbaiki sarana teknis, memperketat prosedur kerja dan menggunakan alat pelindung diri yang sesuai.⁵ Sementara itu, Poetri dan Hartini (2023) mengidentifikasi 33 sumber bahaya dan 62 risiko di area fabrikasi, dengan rekomendasi untuk meningkatkan pemahaman pekerja melalui tes berkala dan penerapan sistem manajemen keselamatan yang lebih ketat.⁶

PT Sari Teknindo Perkasa merupakan perusahaan yang bergerak dalam bidang kontraktor (jasa konstruksi), perdagangan (barang dan jasa), sipil, arsitektural, mekanikal, fabrikasi logam dan *outsourcing*. Upaya K3 yang telah diterapkan pada perusahaan ini yaitu berupa penggunaan alat pelindung diri tetapi belum sepenuhnya digunakan oleh pekerja, selain itu terdapat beberapa jenis rambu K3 di sekitar area operasional kerja (*workshop*). Pada tahun 2021 di perusahaan ini terjadi kecelakaan kerja yang berakibat fatal beberapa pekerja yang disebabkan oleh mesin bubut, pekerja yang pertama mengalami luka robek pada bagian dada dan pekerja kedua mengalami leher terlilit saat pakaian mengenai mesin yang sedang bergerak, kasus lainnya terjadi pada mesin sekrap ketika pekerja mengalami

luka robek di ruas jari pada mesin yang sedang melakukan pengirisan. Selain itu, bentuk kecelakaan kerja yang terjadi beberapa diantaranya tangan terkena besi panas, berbagai cedera saat mengoperasikan mesin dan luka bakar saat melakukan pengelasan.

Mengingat PT Sari Teknindo Perkasa belum memiliki sistem manajemen risiko K3 dalam identifikasi potensi bahaya maka metode *Job Safety Analysis* (JSA) dapat diterapkan terutama setelah terjadi kecelakaan fatal pada perusahaan ini dalam aktivitas kerjanya. Hal ini diharapkan dapat meminimalisir potensi bahaya yang berakibat terjadinya kecelakaan kerja dengan adanya sistem manajemen keselamatan dan kesehatan kerja dalam analisis potensi bahaya di perusahaan ini. Maka peneliti tertarik untuk melakukan penelitian tentang analisis potensi bahaya dengan metode *Job safety Analysis* (JSA) pada proses pekerjaan menggunakan mesin bubut, mesin las, mesin gerinda dan mesin sekrap di PT Sari Teknindo Perkasa. Penelitian ini bertujuan untuk mengetahui analisis potensi bahaya pada pekerjaan menggunakan metode *Job Safety Analysis* (JSA) yang meliputi potensi bahaya, tingkat risiko dan tindakan pengendalian bahaya di PT Sari Teknindo Perkasa pada tahun 2024.

METODE PENELITIAN

Penelitian ini bersifat deskriptif yang menggambarkan dan menjabarkan uraian analisis potensi bahaya pada proses suatu pekerjaan, mengetahui kondisi di lapangan yang dapat menimbulkan bahaya dan memberikan penilaian tingkat risiko serta menentukan tindakan pengendalian bahaya. Penelitian ini dilaksanakan pada bulan April hingga Juni 2024 di PT Sari Teknindo Perkasa yang berlokasi di Jl. Bandar Buat, Simp. Gadut, Kecamatan Lubuk Kilangan, Kota Padang, Sumatera Barat.

Objek dalam penelitian ini adalah potensi bahaya, tingkat risiko dan pengendalian bahaya pada pekerjaan mesin bubut, las, gerinda dan sekrap dengan informan penelitian yang terdiri dari salah satu pekerja tiap bagian mesin yang sudah bekerja diatas 4 tahun sebagai informan utama, seorang *Foreman* sebagai informan kunci dan seorang manajer operasional perusahaan sebagai informan pendukung.

Data primer diperoleh secara langsung melalui observasi potensi bahaya yang ada di lapangan dan wawancara untuk mengetahui potensi bahaya, tingkat risiko dan pengendalian bahaya menggunakan pedoman wawancara yang terbagi atas tiga, yaitu pedoman wawancara informan utama, informan kunci dan informan pendukung. Data sekunder diperoleh dari profil perusahaan berupa gambaran umum perusahaan. Pengolahan data dilakukan dengan reduksi data, penyajian data dan penarikan kesimpulan. Analisis data dilakukan secara *narrative analysis* dengan menafsirkan cerita dari informan yang sebelumnya sudah diperoleh dari hasil observasi dan wawancara.

HASIL PENELITIAN

A. Potensi Bahaya

Tabel 1. Hasil Observasi dan Wawancara Potensi Bahaya di PT Sari Teknindo Perkasa Tahun 2024

	Perkasa	Tahun 2024	
No.	Jenis Mesin	Observasi	Wawancara
1.	Mesin Bubut	Hasil observasi peneliti bahwa mesin bubut berpotensi menyebabkan kaki terluka karena hasil bram pembubutan yang tajam berserakan di lantai/tanah yang dapat terinjak. Selanjutnya menyebabkan mata terkena bram, baju terlilit dan tangan terjepit yang diakibatkan	"Tahapan berbahayanya seperti tadi bramnya bisa kena mata, tangan atau baju kemudian material lepas karena kuncinya kurang kuat trus kena benturan pahat pada diri kita" (Informan Utama). "Untuk APD disediakan oleh perusahaan, tapi kadang ribet banyak kali, jadi ya seperti ini saja" (Informan Utama)
		oleh jarak operator terlalu dekat pada bagian mesin yang berputar.	"Pernah, saat membubut material barang plastik. Jadi kena putaran tersangkut ke baju, kena tarikan dari material mesin badan luka-luka. Karna kurang teliti atau tidak kelihatan putarannya yang kencang jadi pas baju nempel ketarik" (Informan Utama).
			"Ada juga yang kesetrum trus kejang karna ada kabel terkelupas juga watt mesin bubut tinggi" (Informan Utama).
2.	Mesin Las	Hasil observasi peneliti bahwa dalam pengoperasian mesin las berpotensi menyebabkan kaki terjerat kabel las karena di sekitar area kerja ditemukan kabel las yang tidak beraturan. Kemudian	"Ketika kabel ada yang terluka dan menyentuh ke lantai atau tanah yang ada arus air itu bahaya. Mungkin karena kabel itu panas sehingga terkelupas kulitnya" (Informan Utama). "Kalo APD yang digunakan saat ini
		ketika ada kabel las yang terkelupas di sekitar lantai/tanah berpotensi menyebabkan korsleting dikarenakan adanya aliran	berupa kacamata atau topeng las dan sarung tangan kadang ada dipakai' (Informan Utama). "Pernah, kabel luka tadi kesetrum
		air.	gara-gara kabel belum kita perbaiki tapi kita lakukan pengelasan. Pernah juga waktu itu selang meledak tapi nggak bahaya sama orang" (Informan Utama).
3.	Mesin Gerinda	Hasil observasi peneliti bahwa mesin gerinda berpotensi menyebabkan wajah terkena percikan api gerinda jika sudut pemotongan mengarah ke	"Kalau tidak hati-hati patahan batu bisa menyelakai, lentingan bramnya bisa masuk ke mata otomatis kita harus menggunakan kacamata, lalu pakai earplug sebab bunyinya bising sehingga untuk jangka panjang

dalam atau pada operator, mata terkena bram gerinda, tangan tergores/tersayat karena jenis mesin gerinda yang digunakan yaitu gerinda tangan dimana posisi pegangan tangan dekat dengan batu gerinda yang berputar. Kemudian potensi batu gerinda pecah atau patah saat memotong menyebabkan pecahanan batu terpental dan mengenai operator serta adanya kebisingan berlebih pada mesin gerinda

pendengaran terganggu" (Informan Utama).

- "Ada disediakan, untuk APD nya seperti kacamata, sarung tangan dan earplug" (Informan Utama).
- "Terkena mata potong saat memotong besi, posisi tangan tidak kuat dalam memegang gerinda sehingga terpental mengenai wajah mengakibatkan luka robek. Terjadi karena tidak hati-hati, pikiran tidak fokus dan genggaman harus kokoh sebab bahaya kalau tidak kokoh atau batu gerindah sudah aus. (Informan Utama).

4. Mesin Sekrap

Hasil observasi peneliti bahwa mesin sekrap berpotensi menyebabkan tangan tergores saat mengatur benda kerja. Kemudian bahaya saat menempatkan benda kerja dan tangan dalam kondisi licin atau posisi penempatan yang kurang tepat pada landasan dapat mengakibatkan benda kerja jatuh dan menimpa kaki.

- "Bahaya pahat benda tajam jadi kalau tidak hati-hati bisa putus, trus luka robek pada ruas jari karna kecepatan pahat. Disebabkan tidak hati-hati, mengobrol, melihat handphone" (Informan Utama).
- "Dari perusahaan memadai cuma bahaya terjadi karena operator tidak patuh, disuruh pakai tidak mau jadi contohnya benda kerja berat dan jika licin bisa terhimpit" (Informan Utama).
- "Ada ketika melakukan penyekrapan kena pahat sampai luka robek ruas jari tapi tidak sampai putus karena kecepatan lambat, kan kecepatan bisa disetel sesuai pemakanan benda kerja. Penyebabnya tidak fokus tadi, tidak menggunakan sarung tangan" (Informan Utama).

5. Potensi Bahaya Keseluruhan Hasil wawancara yang dilakukan dengan informan kunci dan informan pendukung didapatkan bahwa potensi bahaya dalam proses pekerjaan dengan mesin pada area workshop yaitu bahaya tangan tergores hingga tangan putus.

Banyak jenis bahaya, bisa tergores, bisa putus tangan. Cuma ya tingkat ketelitian kita itu" (Informan Kunci).

"Kalau bahaya tentu ada mengingat pekerjaan ini memiliki risiko tinggi, seperti tangan bisa putus juga ada luka robek dan untuk las itu percikan apinya kena pekerja, lalu bubut dengan bram yang dihasilkannya (Informan Pendukung).

- "Mesin bubut paling fatal akibatnya terutama di bagian chuck nya, seandainya kita terkena bagian itu, terlilit maka sangat kecil kemungkinan untuk selamat karena tidak bisa diberhentikan manual apagi kalau sudah hilang akal". (Informan Kunci).
- "Mesin bubut, karena kita utamanya disana kan, bisa berakibat fatal terhadap pekerja, soalnya mesinnya itu tinggi bahaya yang dihasilkannya" (Informan Pendukung).
- "Banyak tindakan tidak aman, karena masih ada yang bekerja belum begitu lama maka bapak yang mengawasi karena tingkat kecelakaannya lebih tinggi" (Informan Kunci).
- "Tergantung masing-masing, contohnya ada yang tidak memakai sarung tangan karena tidak terbiasa" (Informan Kunci)
- "Untuk sistem identifikasi potensi bahaya belum ada, ya kita kembalikan lagi pada operator seperti ketelitian dan kehati-hatian dalam bekerja" (Informan Pendukung).

B. Tingkat Risiko

Tabel 2. Hasil Observasi dan Wawancara Tingkat Risiko di PT Sari Teknindo Perkasa Tahun 2024

	i Cinasa	I alluli 2024	
No.	Jenis Mesin	Observasi	Wawancara
1.	Mesin Bubut	Hasil observasi peneliti bahwa risiko dengan tingkat rendah pada mesin ini yaitu ketika hasil gram mesin bubut berserakan di	"Lebih banyak risiko sedang misalnya luka gores, memar. Terjadi ketika memasang dan menyetel material yang akan dibubut ada pakai kunci trus ada terkena pahat, ya tidak hati-
		lantai/tanah dapat terinjak menimbulkan luka pada kaki, hal ini sering terjadi tetapi tidak menimbulkan cedera jika menggunakan	hati, tidak pakai sarung tangan. Biasa terjadi saat mengoperasikan mesin tapi tidak selalu. Diobati pakai obat merah saja" (Informan Utama).
		alas kaki yang aman. Selanjutnya ketika tangan terkena lentingan gram dan sering terjadi tapi hanya menyebabkan luka lecet atau sama sekali tidak ada cedera yang ditimbulkan. Tingkat risiko dengan	"Badan luka-luka trus tangan tapi tidak parah kali masih cepat diatasi, dimatikan mesinnya tapi jarang terjadi. Waktu itu penanganannya dibawa ke puskesmas" (Informan Utama). "Pernah ada kejadian tersengat listrik trus kejang dan dibawa ke IGD"

kategori sedang meliputi (Informan Utama). kebisingan yang mengganggu pendengaran dalam jangka panjang lalu mengakibatkan tangan mengalami luka gores dan memar hal ini terjadi ketika memasang benda kerja dan pahat serta menggunakan alat bantu dimana hal ini biasa terjadi tapi dapat diobati dengan P3K. 2. "Ketika kesetrum karena kabel luka Mesin Las Hasil observasi peneliti bahwa risiko dengan tingkat dampak yang diberikan hanya rendah ditemukan saat mengejutkan saja" (Informan Utama). terierat kabel las risiko vang "Dampak risiko nya bisa sedang, saat ditimbulkan tersandung kita memukul kerak las terkena mata saat membersihkan hasil pengeriaan kabel dan tidak sering terjadi. Selanjutnya risiko ketika sedang panas tapi tidak sering ketika selang las meledak terjadi" (Informan Utama). hanya menyebabkan suhu di area kerja panas dan hal "Suaranya bising sekali bisa sakit ini sangat jarang terjadi. telinga, pas percikan api las masuk ke mata ketika kita tidak pakai kap las Saat kabel las yang terkelupas bersentuhan bisa fatal pada mata bisa infeksi" dengan air menyebabkan (Informan Utama). sengatan listrik ringan pada operator jarang terjadi dan "Asap las kalau terhirup kadang hanya berdampak kecil. sesak nafas, tenggorokan rasanya sakit" (Informan utama). 3. Hasil observasi dan "Pastikan tidak ada kabel yang Mesin Gerinda wawancara bahwa risiko terluka karena jika bersentuhan dengan besi maka korslet hingga dengan tingkat rendah tersentrum namun jarang terjadi" ditemukan saat memasang batu gerinda berisiko (Informan Utama). mengalami lecet pada "Kalau tersayat masih bisa ditolong tangan. Kemudian ketika dengan obat yang ada seperti lapisan kabel terkelupas dan betadine dan hanya terjadi kalau bersentuhan dengan besi maka dapat terjadi operator salah memegang gerinda" korsleting yang (Informan Utama). menyebabkan sengatan listrik tetapi tidak berdampak "Patahan batu gerinda terpental ke besar karena daya listrik wajah hingga robek dan perlu dijahit mesin kecil serta hal ini juga lukanya. Sering batu pecah tapi kalau jarang terjadi. kena operator jarang" (Informan Utama). "Lentingan bramnya, karna sebagian orang tidak mau pakai kacamata safety jadi masuk lentingan ke mata. maka untuk jangka panjang bisa buta, jadi harus cepat dibawa ke rumah sakit untuk mengeluarkan partikel tersebut" (Informan Utama).

- 4. Mesin Sekrap
- Hasil observasi peneliti bahwa risiko dengan tingkat rendah ditemukan saat tangan tergores memasang pahat dan mengatur benda kerja, tangan terkilir ketika memutar ragum untuk mengunci benda kerja dengan kuat dimana risiko yang diakibatkan tangan nyeri dapat diatasi sendiri tetapi jarang terjadi.
- "Kalau operator tidak patuh pakai APD terutama sepatu boots, disuruh pakai tidak mau, jadi benda kerja berat jika licin bisa terhimpit kaki" (Informan Utama).
- "Pahat, jarang terjadi tapi risikonya jari robek bisa sampai putus, tergantung kecepatan pahat" (Informan Utama).

5. Tingkat Risiko Keseluruhan Hasil wawancara peneliti yang dilakukan dengan informan kunci didapatkan bahwa bentuk kecelakaan kerja dengan risiko paling tinggi terjadi pada mesin bubut.

- "Saya sendiri mengalami pada mesin bubut, leher bapak dililit hingga membiru karena baju yang terlilit saat mesin bergerak tapi langsung menekan tombol emergency. Sebelum bapak ada juga kejadian pekerja yang terkena material bubut hingga dadanya mengalami luka robek yang cukup parah" (Informan Kunci).
- "Lumayan sering terjadi kecelakaan di mesin bubut, ada yang luka badannya sampai robek ada yang terlilit dan banyak lagi, fatal sekali risikonya mesin ini" (Informan Pendukung).
- "Kalau sedang yang biasa terjadi seperti luka gores, tersayat, luka bakar tapi yang tidak parah masih bisa diobati dengan betadine dan lainnya" (Informan Kunci).
- "Paling lecet sedikit trus kalo terjepit sedikit memar tapi hilang sendiri nanti memarnya, cepat sembuhnya" (Informan Kunci).
- "Banyak sekali ya faktornya, bisa jadi karena mesin ada kendala tapi tidak luput juga dari manusianya. Tidak hati-hati, tidak teliti, dan tidak patuh kalau pakai APD juga karna belum memahami mesin sepenuhnya" (Informan Kunci).
- "Melihat besar risikonya nanti kita liat bagaimana dampak yang ditimbulkan setelah iu apakah sering terjadi kecelakaannya baru nanti kita tindaklanjuti" (Informan Pendukung).

C. Pengendalian Bahaya

Tabel 3. Hasil Observasi dan Wawancara Pengendalian Bahaya di PT Sari Teknindo Perkasa Tahun 2024

Teknindo Perkasa Tahun 2024					
No.	Jenis Mesin	Observasi	Wawancara		
1.	Mesin Bubut	Hasil observasi peneliti ditemukan bentuk pengendalian yang dilakukan yaitu adanya rambu K3 terkait tentang keselamatan kerja membubut. Kemudian operator menggunakan APD tetapi tidak lengkap sesuai dengan yang diperlukan untuk membubut. Berdasarkan hasil wawancara mesin selalu dilakukan pengecekan awal sebelum mesin digunakan	"Awalnya dicek oli terus kunci tools sama kunci kepala lepas, dicek setiap hari, karna kalau tidak setiap hari bisa kadang olinya bisa menyebabkan gigi patah trus mesin tidak bisa dioperasikan. Tentu harus dipastikan berfungsi setiap hari" (Informan Utama). "Ada dilakukan maintenace sekali dalam sebulan. Dibantu oleh kepala mekanik" (Informan Utama). "Tidak ada. Kalau dilihat-lihat belum sesuai prosedur, seharusnya pakai APD lengkap kan" (Informan Utama).		
			"Perlunya ketelitian trus pakai APD sarung tangan dan kacamata. Tapi belum cukup dan masih banyak kurangnya" (Informan Utama).		
2.	Mesin Las	Hasil observasi peneliti ditemukan bentuk pengendalian yang ada yaitu tersedianya APD tetapi tidak lengkap digunakan oleh operator saat proses pengelasan, terdapat rambu K3 di area kerja tetapi tidak ditemukan prosedur kerja pengelasan. Berdasarkan hasil wawancara mesin selalu dilakukan pengecekan awal sebelum digunakan dan untuk pemeliharaan berkala dilakukan satu kali dalam seminggu.	"Cek kabel las, seandainya ada yang terluka kita perbaiki dulu baru kita lakukan pengerjaan pengelasan. Minimal 1x seminggu harus dicek, mesin harus selalu berfungsi dengan baik" (Informan Utama). "Tidak, kalau untuk tahap pengerjaan sudah sesuai standar trus ada pakai APD kacamata dan sarung tangan juga" (Informan Utama). "Balik lagi ke operatornya kadang kelalaian manusia pasti ada, misalnya dia masang APD cuma sepatu aja sedangkan sarung tangan ga dipasang, ya merah tangannya nanti kepanasan kan paling tangan terkelupas. Kalau pengendaliannya sesuailah dengan pentunjuk-petunjuk yang ada dipajang, misalnya pemakaian APD yang sesuai sehingga kalau sudah mematuhi peraturan itu sudah aman, itu standarnya sudah internasional" (Informan Utama).		
3.	Mesin Gerinda	Hasil observasi peneliti ditemukan bentuk pengendalian yang ada yaitu tersedianya APD	"Yang pertama cek kondisi listrik, tidak ada kabel yang luka. Yang kedua gerinda harus dalam kondisi yang pas maksudnya karbon gerinda harus		

tetapi tidak lengkap digunakan oleh operator saat proses menggerinda, terdapat rambu K3 di area kerja tetapi tidak ditemukan prosedur kerja pengelasan. Berdasarkan hasil wawancara mesin selalu dilakukan pengecekan awal sebelum digunakan dicek, kalau karbon gerinda habis arangnya maka kecepatan gerinda akan berkurang speednya. Yang ketiga kondisi on off saklar harus baik. Tiap kali dipakai harus dicek mengingat keselamatan safety diri kita." (Informan Utama).

"SOP kita nggak ada, kalo APD ada seperti kacamata, sarung tangan dan earplug" (Informan Utama).

"Makanya periksa kabel raun sama colokan gerinda diawal sebelum memulai pekerjaan. Untuk APD nya kacamata bening dan sarung tangan" (Informan Utama).

4. Mesin Sekrap

Hasil observasi peneliti ditemukan bentuk pengendalian yang ada yaitu tersedianya APD tetapi tidak lengkap digunakan oleh operator, terdapat rambu K3 di area kerja tetapi tidak ditemukan prosedur kerja mengoperasikan mesin sekrap. Berdasarkan hasil wawancara mesin selalu dilakukan pengecekan awal sebelum digunakan dan untuk pemeliharaan berkala dilakukan satu kali dalam sebulan.

"Listrik harus stabil. arus listrik ke mesin sekrap harus berjalan normal dengan minimal daya mesin 3 pass, kalau turun 1 pass otomatis arus listrik tidak normal sehingga mempengaruhi kecepatan mesin. Lalu pastikan mesin dalam keadaan normal tidak ada kendala. Operator dalam keadaan sehat kalau kurang sehat kan tidak bisa bekerja secara normal hingga bisa mengakibatkan perusahaan rugi karna harus mengganti benda kerja baru. Kalau dari segi operator ya kecelakaan kerja yang merugikan. Dilakukan satu kali dalam sebulan. kalau ada oli kurang ditambah, kabel dibalut selotip" (Informan Utama).

"Tidak ada kalau di bengkel tapi kalau proyek diluar ada safety talk. APDnya kacamata, sarung tangan" (Informan Utama).

"Harus dalam keadaan fit dan fokus, tidak ada tekanan diluar pekerjaan, memakai APD dengan standar perusahaan dan harus paham dengan mesin serta berhati-hati" (Informan Utama).

5. Pengendalian Bahaya Keseluruhan

Hasil wawancara peneliti yang dilakukan dengan informan kunci didapatkan bahwa untuk penerapan K3 di perusahaan yaitu dengan menerapkan kebersihan mesin dan area kerja dimana hal ini merupakan bentuk 5R

"Yang penting sekali menjaga kebersihan mesin, setiap selesai bekerja dibersihkan mesinnya supaya senang besoknya untuk mulai kerja dan area sekitar harus bersih" (Informan Kunci).

"Ada di dinding bengkel rambu 5R, ada panduan bekerja secara baik dan (Ringkas, Rapi, Rawat, Resik dan Rajin) di tempat kerja terkhususnya dalam indikator Rawat yang menerapkan kebersihan di area kerja. benar, trus rambu K3 lainnya. Kita harap operator juga terlibat dalam pengendaliannya" (Informan Pendukung).

"Maintenance mesin ya, kita lakukan satu kali dalam sebulan, dicek keadaan mesin atau olinya kurang dan segala macam komponennya" (Informan Kunci).

"Ada, untuk safety ada seperti helm, kacamata dan lain-lain. Tapi ya itu jarang digunakan pekerja, banyak alasannya." (Informan Kunci).

"APD memadai, perusahaan menyediakan safety tools, sarung tangan, safety untuk dada, kap las, kacamata dan ada juga helm dan body hardness tapi hanya digunakan untuk proyek luar" (Informan Pendukung).

"Ada, tapi sudah lama tidak diganti, jarang dipakai soalnya" (Informan Kunci).

"Ya kita pantau terus diberi teguran lisan" (Informan Pendukung). "Kalau AREC nggak ada ya, tapi ada kemaren orang BPS datang kesini minta dokumen rahasia, trus ada piagam safety kontraktor" (Informan Pendukung).

"Tentu ada, kita disini ada dua asuransi kesehatannya ada BPJS Ketenagakerjaan dan BPJS Kesehatan yang ada juga tanggungan keluarganya" (Informan Pendukung).

PEMBAHASAN

Potensi Bahaya dan Tingkat Resiko:

Mesin Bubut

Mesin ini dapat menyebabkan cedera serius jika operator tidak menggunakan alat pelindung diri (APD) yang sesuai. Bahaya termasuk kaki terluka akibat serpihan logam, tangan terjepit oleh mesin berputar dan kerusakan pendengaran karena kebisingan tanpa penggunaan *earplug*. Selain itu, potensi bahaya listrik akibat tegangan tinggi juga menjadi

ancaman serius. Kecelakaan kerja di bengkel bubut sering disebabkan oleh tindakan operator, kondisi mesin, penggunaan APD dan pengaman pada mesin.⁸

Pengoperasian mesin bubut memiliki tingkat risiko tinggi, terutama terkait dengan potensi bahaya seperti jari tangan terlilit dan robek, serta luka serius akibat bagian chuck yang bergerak. Bahaya terbesar pada mesin bubut adalah terlilit ulir berputar yang dapat mengakibatkan luka berat pada tubuh pekerja. Risiko ini diperburuk oleh daya listrik tinggi yang dapat menyebabkan korsleting dan kejang jika terjadi sengatan listrik. Meskipun kejadian ini jarang, dampaknya sangat serius dan memerlukan penanganan medis cepat.

Mesin Las

Pada mesin las, kabel yang berantakan dapat menyebabkan operator tersandung dan jatuh, sementara kabel yang terkelupas bisa menyebabkan korsleting, terutama jika ada air di area kerja. Bahaya lain termasuk gangguan pendengaran akibat kebisingan, serta luka bakar dan kerusakan kulit dari percikan api dan elektroda panas. Operator yang tidak menggunakan APD seperti topeng las dan sarung tangan sangat rentan terhadap risiko ini. Kecelakaan kerja di workshop las terjadi karena area kerja yang tidak rapi sehingga terjatuh karena kabel berserakan, pekerja kurang berhati-hati, kulit melepuh karena tidak menggunakan APD saat terkena percikan api las.⁹

Paparan sinar las menimbulkan risiko tinggi seperti mata perih, lelah, kemerahan, dan potensi kerusakan permanen pada mata, serta gangguan pendengaran akibat kebisingan. Hubungan signifikan antara lama paparan sinar las dan penggunaan alat pelindung diri (APD) dengan kelelahan mata pada pekerja yang sering melakukan pengelasan lebih dari 5 jam per hari. Asap las dapat menyebabkan sesak napas dan iritasi saluran pernapasan dalam jangka panjang, dengan risiko gangguan pernapasan lebih tinggi bagi pekerja yang tidak menggunakan APD.

Mesin Gerinda

Potensi bahaya utama dari mesin gerinda adalah percikan api yang bisa mengenai wajah dan mata, serta risiko tangan terluka akibat salah posisi saat menggenggam gerinda. Pecahan batu gerinda yang bisa terpental juga merupakan risiko yang serius, terutama jika operator tidak menggunakan pelindung wajah. Bahaya lainnya termasuk kebisingan yang dapat merusak pendengaran. Kecelakaan kerja di mesin gerinda sering disebabkan oleh kabel terkelupas atau *switch on off*, kebisingan, dan pecahan batu gerinda yang dapat melukai bagian tubuh.¹⁰

Mesin gerinda memiliki risiko tinggi termasuk sengatan listrik, kebisingan yang dapat merusak pendengaran, serta lentingan pecahan batu gerinda yang dapat menyebabkan luka robek pada wajah dan gangguan penglihatan jika mengenai mata. Bahaya dengan risiko ekstrim dari mesin yaitu pekerja tersengat listrik berisiko mengakibatkan luka bakar, terkena percikan gram besi mengakibatkan iritasi mata, tangan mengalami luka gores terkena pisau

gerinda.¹⁶ Semua ini berpotensi menyebabkan luka berat dan penyakit jangka panjang yang memerlukan penanganan medis.

Mesin Sekrap

Potensi bahaya pada mesin sekrap termasuk benda kerja yang jatuh dan menimpa kaki, serta bahaya tangan terkilir saat mengunci benda kerja dengan terlalu kuat. Pahat yang bergerak bisa menyebabkan luka robek hingga putus pada jari tangan jika operator tidak berhati-hati. Selain itu, lentingan bram dari mesin sekrap bisa melukai mata, terutama jika operator tidak menggunakan kacamata pelindung. Potensi bahaya pada mesin sekrap diantaranya terjepit ragum saat memasang benda kerja disebabkan oleh kelalaian operator, tergores pahat karena tangan berada di area pahat dan terkena lentingan benda kerja yang tidak terjepit kuat pada ragum. Mesin sekrap menunjukkan risiko tinggi dari bram yang dapat masuk ke mata dan menyebabkan gangguan penglihatan, serta potensi robeknya jari tangan akibat bagian pahat mesin. Mesin sekrap, terutama bagian yang berputar, memiliki risiko besar terhadap potongan jari atau bagian tubuh lain yang terjepit atau terperangkap.

Keseluruhan Potensi Bahaya

Secara keseluruhan, semua jenis mesin di workshop memiliki potensi bahaya yang signifikan, dengan mesin bubut dianggap paling berbahaya. Hal ini disebabkan oleh kurangnya pengalaman operator dan ketidakpatuhan dalam penggunaan APD. Manajemen perusahaan memegang peran penting dalam mencegah kecelakaan dengan memastikan operator memahami dan menguasai mesin serta mematuhi prosedur keselamatan kerja. Metode Job Safety Analysis (JSA) efektif dalam mengidentifikasi potensi bahaya dan tingkat risiko, serta memberikan rekomendasi pengendalian untuk meminimalisir kecelakaan kerja. ¹²

Di tingkat perusahaan, risiko kerja tertinggi ditemukan pada mesin bubut, terutama pada bagian ulir yang bergerak. Risiko ini muncul dari kombinasi faktor seperti kendala mesin, tindakan pekerja, dan lingkungan kerja. Manajemen menilai tingkat risiko berdasarkan dampak dan frekuensi kecelakaan, kemudian mengambil langkah-langkah penanganan. Pengawasan dan bimbingan saat bekerja adalah metode penting untuk mengurangi risiko terhadap bahaya yang ada. Dengan demikian, penilaian risiko yang cermat dan tindakan pencegahan yang tepat sangat diperlukan untuk mengurangi potensi bahaya dan melindungi keselamatan pekerja di lingkungan kerja yang menggunakan mesin-mesin tersebut.

Pengendalian Bahaya

Mesin Bubut

Pengendalian bahaya pada mesin bubut fokus pada mitigasi risiko tinggi. Pengendalian substitusi dilakukan dengan menggunakan alat angkat hoist untuk menghindari kecelakaan akibat benda kerja berat yang jatuh. Pengendalian teknik melibatkan pemasangan pelindung air pada tombol saklar untuk mencegah korsleting, serta penggunaan *safety holder* pahat

dan *dust collectors* untuk melindungi tangan dan mata dari bahaya. Sistem *interlock* juga dipasang untuk menghentikan mesin jika operator terlalu dekat, dan pelindung mesin dipasang pada bagian chuck. Pengendalian administratif mencakup pengembangan SOP dan Prosedur Kerja Aman (PKA), pemasangan PK3, serta peningkatan pemeriksaan dan pemeliharaan mesin. Operator juga diwajibkan memakai APD lengkap seperti *wearpack*, kacamata pelindung, *earplug*, sarung tangan, dan *safety boot*s. Hal ini sesuai dengan temuan Dodi dan I Made (2020) yang menekankan pentingnya pelindung dan prosedur yang tepat dalam pengoperasian mesin bubut.¹⁸

Mesin Las

Pada mesin las, pengendalian eliminasi melibatkan penghapusan sumber air di area kerja untuk menghindari risiko korsleting. Pengendalian substitusi mengganti kawat las dengan yang emisi karbon rendah untuk mengurangi asap berbahaya. Teknik pengendalian meliputi penggunaan cable ties untuk merapikan kabel, memasang circuit breaker dan *Local Exhaust Ventilation* (LEV) untuk menangkap asap las. Pengendalian administratif mencakup pengembangan SOP dan PKA, rotasi waktu kerja operator, dan pemeliharaan berkala. Penggunaan APD seperti topeng las, apron, sarung tangan kulit, *earplug*, dan *safety boots* juga diterapkan. Penggunaan *vacuum machine* dan *fan* untuk mengatasi asap, serta rotasi kerja dan penggunaan APD untuk melindungi operator.¹⁹

Mesin Gerinda

Pengendalian pada mesin gerinda dimulai dengan pemasangan pelindung mata gerinda untuk melindungi operator dari pecahan batu. Pengendalian administratif meliputi pengembangan SOP dan PKA terkait posisi aman dalam memegang gerinda serta pemasangan PK3 di area kerja. Operator diwajibkan menggunakan safety face shield, sarung tangan, earplug, dan safety boots. Pelapisan kabel dengan selongsong dan pemasangan penutup alat gerinda untuk mengurangi risiko.¹⁶

Mesin Sekrap

Pengendalian bahaya pada mesin sekrap termasuk penggunaan safety holder pahat dan alat bantu klem untuk mengurangi kontak langsung dengan pahat. Sistem interlock dipasang untuk mendeteksi kehadiran operator di sekitar mesin. Alat bantu fixture dirancang untuk menahan benda kerja dan pelindung mesin untuk mencegah jari terlilit. Dust collectors dan LEV dipasang untuk menghindari bram masuk ke mata. Pengendalian administratif meliputi pengembangan SOP dan PKA serta pemasangan PK3. APD lengkap seperti wearpack, kacamata pelindung, earplug, sarung tangan, dan safety boots harus digunakan.Pentingnya pembersihan permukaan kikir untuk menghindari serpihan fatal.²⁰

Pengendalian Bahaya Keseluruhan

Secara keseluruhan, pengendalian bahaya di perusahaan melibatkan penerapan kebersihan mesin dan area kerja sesuai dengan prinsip 5R (Ringkas, Rapi, Rawat, Resik,

dan Rajin), serta penempatan rambu K3. Pemeriksaan dan pemeliharaan mesin dilakukan sebulan sekali, meliputi komponen mesin dan kabel. APD sesuai standar disediakan, meski belum sepenuhnya digunakan oleh operator, dan perusahaan memberikan teguran lisan sebagai tindakan awal. PT Sari Teknindo Perkasa memiliki sertifikat audit dari CAT namun tidak memiliki AREC industri. Perusahaan juga memberikan manfaat dan jaminan kesehatan melalui BPJS Ketenagakerjaan dan BPJS Kesehatan. Perbaikan teknis dan administratif, serta pembuatan instruksi dan prosedur kerja untuk mengendalikan risiko.²¹

SIMPULAN DAN SARAN

Berdasarkan hasil penelitian dan pembahasan dapat disimpulkan bahwa operasi mesin bubut, las, gerinda dan sekrap menyimpan berbagai potensi bahaya yang dapat mengakibatkan terjadinya kecelakaan kerja dengan dampak yang cukup luas. Mulai dari bahaya bagian mesin yang bergerak berisiko jari terlilit oleh chuck mesin, lentingan bram masuk ke dalam mata menyebabkan iritasi mata, patahan batu gerinda melukai tubuh hingga paparan radiasi, panas dan percikan api, selain itu kebisingan yang tinggi dan potensi sengatan listrik juga menjadi ancaman bagi operator. Kesimpulan penelitian ini adalah operasi mesin bubut, las, gerinda, dan sekrap mengandung berbagai potensi bahaya yang dapat menyebabkan kecelakaan kerja. Disarankan perusahaan untuk menerapkan hierarki pengendalian bahaya secara menyeluruh terutama pada bahaya dengan risiko tinggi disertai keterlibatan pekerja dalam mengembangkan menerapkannya guna menciptakan lingkungan kerja yang aman sehingga dapat meminimalisir terjadinya kecelakaan kerja.

DAFTAR PUSTAKA

- 1. Ali M. Manajemen Industri 4.0. 2018. 180 p.
- 2. Mahawati E, Fitriyatinur Q, Yanti CA, Rahayu PP, Aprilliani C, Chaerul M, et al. Keselamatan Kerja dan Kesehatan Lingkungan Industri. Yayasan Kita Menulis. 2021;37.
- 3. Peraturan Pemerintah Republik Indonesia Nomor 50 Tahun 2012 Tentang Penerapan Sistem Keselamatan dan Kesehatan Kerja.
- 4. Yong A. Analisa Keselamatan Kerja. Jakarta: Rhuekamp Indonesia; 2020.
- 5. Pratama Rahman MD, Priyana ED, Rizqi AW. Job Safety Analysis (JSA) Sebagai Upaya Pengendalian Resiko Kecelakaan Kerja Pada Pekerjaan Fabrication Dd PT. Wilmar Nabati Indonesia. Tek Sains J Ilmu Tek. 2022;7(2):98–109.
- 6. Poetri TM, Hartini S. Analisis Risiko Keselamatan dan Kesehatan Kerja Guna Meminimalisir Potensi Hazard Pada Proses Fabrikasi Baja. Ind Eng Online J. 2023;12(3):1–11.
- 7. PT Sari Teknindo Perkasa. Company Profile. 2023.
- 8. Anas AA. Faktor Yang Berhubungan Dengan Kejadian Kecelakaan Kerja Pada Pekerja

- Mesin Bubut Di Kecamatan Delitua Tahun 2020. Univ Islam Negri Medan Sumatera Utara. 2021;1–137.
- 9. Sasmito Aji S, Jufriyanto M. Analisis Risiko Kecelakaan Kerja Pada Workshop Las Dengan Metode Hazard And Operability (HAZOP). J Tek Ind. 2023;9(2):2023.
- 10. Thursina RA. Identifikasi Bahaya Dan Penilaian Risiko Operator Mesin Gerinda. Indones J Occup Saf Heal. 2018;7(1):30.
- 11. Putri SK. Kesehatan dan Keselamatan Mesin Sekrap. Politek Negeri Bandung. 2019;
- 12. Fatach MN, Dhartikasari E, Rizqi AW. Mengidentifikasi Bahaya dan Pengendalian Resiko Dengan Metode Job Safety Analysis. J Tek Ind J Has Penelit dan Karya Ilm dalam Bid Tek Ind. 2023;9(1):44.
- 13. Zahra SF, Sutrisno. Analisis Bahaya dan Penilaian Risiko Menggunakan Metode HIRARC PT. Cahaya Mekanindo Perkasa. J Sains, Teknol dan Ind. 2022;20(1):255–64
- Sundawa E, Ginanjar R, Listyandini R. Hubungan Lama Paparan Radiasi Sinar Las dengan Informal di Kelurahan Sawangan Baru dan Pasir Putih Kota Depok Tahun 2019.
 J Mhs Kesehat Masy. 2020;3(2):196–203.
- 15. Aldi G. Hubungan Karakteristik Pekerja Las dan Penilaian Resiko dengan Keluhan Gangguan Pernafasan di Wilayah Kotamadya Jakarta Barat Tahun 2020. Univ Muhammadiyah Prof Dr Hamka. 2020;
- 16. Afifuddin M, Andesta D, Dahda SS. Pendekatan Metode Hazard Identification Risk Assessment and Risk Control Dengan Kombinasi Ohsas 18001 Di Seksi Fabrikasi Pt. Xyz. JUSTI (Jurnal Sist dan Tek Ind. 2021;1(4):503.
- 17. Ariel Simanjuntak K. Proses Produksi Mesin Sekrap dan Mesin Frais. Fak Tek Univ Sumatera Utara. 2020;
- 18. Febriyanto D, Teknikmesin J. Study Identifikasi Bahaya Dan Penilaian Resiko Dengan Menggunakan Metode TRA (Task Risk Assessment) I Made Muliatna. J Pendidik Tek Mesin. 2017;6(2):139–43.
- 19. Winiarto BH, Mariawati AS. Identifikasi Penilaian Aktivitas Pengelasan Pada Bengkel UmuDengan Pendekatan Job Safety Analysis. J Tek Ind Untirta. 2018;1(1):59–65.
- 20. Makapedua KS. Analisis Risiko Kecelakaan Kerja Pada Bengkel Praktek Permesinan SMK Dinamika Pembangunan Jakarta Menggunakan Metode Hazard Identification And Risk Assessment (HIRA). 2018;152.
- 21. Nudin MI, Andesta D. Upaya Pencegahan Kecelakaan Kerja Menggunakan Metode Job Safety Analysis Pada Departemen Fabrikasi. J Tek Ind J Has Penelit dan Karya Ilm dalam Bid Tek Ind. 2023;9(1):51.